
Performance Analysis of Aerial Data Collection from Outdoor
IoT Sensor Networks using 2.4GHz 802.15.4

Michael Nekrasov
mnekrasov@ucsb.edu
UC Santa Barbara

Ryan Allen
rallen00@ucsb.edu
UC Santa Barbara

Elizabeth Belding
ebelding@ucsb.edu
UC Santa Barbara

ABSTRACT
Unmanned Aircraft Systems (UAS), i.e. drones, have been commer-
cially successful in both the consumer and industrial sectors in part
due to the wide variety of applications they benefit. In environmen-
tal monitoring and precision agriculture, UASs can be utilized for
data collection from rural IoT sensor networks. These networks
frequently operate over some variant of the IEEE 802.15.4 standard,
taking advantage of the standard’s low power usage. Consumer
802.15.4 radios are widely available in compact form factors, mak-
ing them ideal for application in environmental and agricultural
sensor networks. Unlike other wireless standards, 802.15.4 is well
studied on the ground but has not received rigorous evaluation in
three dimensional aerial communication, which introduces new
challenges, such as antenna radiation patterns and extreme ranges.
This paper provides an initial look at the performance of 2.4GHz
802.15.4 for data collection from a UAS. We provide experimental
performance measurements using an outdoor aerial testbed, exam-
ining how factors, such as antenna orientation, altitude, antenna
placement, and obstruction affect signal strength and reception rate
of packets. We find that these parameters play a significant role in
reception rate, but have a much weaker impact on received signal
strength. We conclude by discussing some takeaways on sensor
network configuration for aerial data collection.
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1 INTRODUCTION
Unmanned Aircraft Systems (UAS) are a promising technology for
data collection from outdoor sensor networks. Environmental and
agricultural networks may not have existing internet backhauls
for data delivery due to low population densities in rural areas,
making UASs a potential data delivery alternative. Further, net-
works with backhaul connectivity can become damaged by extreme
weather, causing network fragmentation and leading to unreach-
able sensors. To provide connectivity, UASs can be deployed as
aerial network relay nodes [5, 16, 18, 23] or as data mules [13, 19].
In addition to mending network fragmentation, UAS applications
include post-disaster data collection involving inoperative com-
munication infrastructure [1, 7, 8], supplementing existing com-
munication infrastructure for vehicular networks [9], and rural
applications in environmental monitoring [12, 22] and precision
agriculture [10, 21].

Many ground-based sensors in these types of networks employ
the IEEE 802.15.4 Low-Rate Wireless Personal Area Networks (LR-
WPANs) radio standards as well as derivative standards, such as
Zigbee [3] for low-rate, low-power connection to Internet of Things
(IoT) sensors. Unlike the 802.11 specification, these standards focus
on energy performance rather than data rates by sending infrequent
transmissions over long distances. Examination of the interaction
between these transmission standards and aerial systems is essential
to understand the feasibility of aerial data collection.

We identify elements critical to successful data collection from
an 802.15.4 2.4GHz network using a moving UAV. We conduct per-
formance measurements on RSSI and packet loss by evaluating the
impact of parameters, such as altitude, displacement, antenna ori-
entation, obstruction, transmission rate, and transmitter elevation.
We find that altitudes of 150-250ft with a receiver that is mounted
to the UAS parallel to the ground are optimal, while the orientation
of the transmitter does not have a significant impact on reception.

2 RELATEDWORK
Numerous studies have examined 802.15.4 performance in two di-
mensional space. In [20], the authors offer insight on performance
and coexistence with 802.11. [11] discusses 802.15.4 propagation
characteristics, while [17] examines person-to-person communica-
tion over 802.15.4. However, these two dimensional studies focus
heavily on characteristics such as throughput and RSSI and do not
address reception rates or the additional challenges of communi-
cating in three dimensions.

Alternatively, there have been previous works that study 802.11
performance in three dimensional space. Both [2] and [14] reveal
that the high mobility of UAVs can result in poor performance in
802.11. Additionally, [4] and [24] show that due to the toroidal
radiation patterns in consumer omni-directional antennas, signal
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quality can be strongly affected by antenna orientation for 802.11
devices in three dimensional space. Given that 802.11 performance
changes in three dimensions, there is reason to believe that 802.15.4
will also change and, henceforth, should be studied.

Most closely related to our work, [15] reveals that 802.15.4 de-
vices are sensitive to antenna orientation in three dimensional space.
However, the statistics in this paper are from stationary sensors no
further than three meters from each other, whereas our measure-
ments are taken from a mobile drone as far as 300m away. Thus
our work is, to our knowledge, the first performance measurement
study of 802.15.4 ground-air data collection performance from a
UAS.

3 METHODS
In March 2019, we performed experimental measurements in an
outdoor aerial testbed near our university. In our experiments, IoT
nodes running the 802.15.4 protocol were placed on the ground,
broadcasting messages at 500ms intervals. The UAS was flown over
the network to collect data. We conducted nine total experimental
runs divided evenly across three locations. Each run comprised
thirteen altitudes, spanning roughly one hour of flight time, for a
total of nine hours of flights.

3.1 Equipment
We used six Digi WRL-15126 XBee3 RF 2.4GHz trans-ceivers utiliz-
ing 802.15.4. The advertised outdoor range for each node is 1200m
at a power of 8dBm and a receiver sensitivity of -103dBm. We se-
lected the XBee3 2.4GHz (as opposed to 900MHz or 868MHz) radio,
a common off-the-self IoT radio, to make our work comparable to
previous research [11, 15, 17, 20].

IoT Transmitters: Four XBee radios served as IoT transmitters,
mounted on a SparkFun XBee Explorer with a USB-to-Serial con-
verter, and controlled by a SparkFun Teensy LC. An external battery
supplied power to the Teensy LCs through its own USB-to-Serial
converter and forwarded power to the XBee. The nodes were config-
ured to broadcast packets, 23 bytes each, every 500ms. The packet
contained unique device and sequence identifiers and a randomly
generated floating point number to simulate sensor data.

Figure 1 shows each transmitter configured for slightly different
experimental conditions:

• Horizontal: Laid flat on ground.
• Vertical: Placed on edge on ground.
• Elevated: Mounted to pole 0.5 meters above ground.
• Obstructed: Laid flat under 1 quart of debris.

For each trial, transmitters were placed in a line approximately
11m apart with no obstruction within the 15cm vicinity. XBee
placement was randomized for each trial, and GPS coordinates were
recorded manually from repeated readings using a smartphone GPS.

Unmanned Aircraft System: Figure 1e shows the UAS, a DJI
Matrice 100, which communicates with a remote control at 5.725
- 5.825 GHz (outside our monitoring frequency of 2.4GHz). We
equipped the UAS with two XBees set to receive only. They were
mounted to the bottom of the UAS with the horizontal receiver
parallel to the ground and the vertical receiver perpendicular to the
ground.

Packets and their associated received signal strength indicator
(RSSI) reported by the XBee radios were stored via a USB-attached
on-board Raspberry Pi2 Model B. The location of the UAS for the
duration of each trial was recorded from the Matrice 100 GPS con-
nected via UART to the Pi, sampling at a rate of 50Hz.

The UAS was flown in a straight line approximately over the
transmitters at an average speed of about 2.2m/s (5mph). The flight
path of each trial and altitude varied, as the flights were manually
executed under varying wind conditions. Each flight reached a total
horizontal distance of 250-300m in both directions from the nearest
transmitter (depending on local topography). For each trial, we flew
at 13 altitudes (in relation to the lowest transmitter): 30ft, 40ft, 50ft,
60ft, 70ft, 80ft, 90ft, 100ft, 150ft, 200ft, 250ft, 300ft, and 400ft.

3.2 Location
The experiments were conducted at three locations, with varying
topography, in a coastal grassland reserve near the university. The
area is relatively flat with minor obstruction due to tall grass and
bushes. The three locations are as follows

Road: Transmitters were deployed along a 200m section of a flat
dirt road. The area had the lowest level of natural obstruction among
the three experimental sites.

Grassy: Transmitters were deployed in a field with tall grass and
nearby bushes, ≈1m tall, but with the immediate 15cm around each
transmitter unobstructed.

Hills: Transmitters were deployed on the uneven terrain of hills
with a shallow trench, (≈0.5m deep), cut out by erosion. Tall grass
and a denser concentration of bushes were prevalent, but the im-
mediate 15cm surrounding the transmitter was unobstructed.

(a) Horizontal (b) Vertical (c) Elevated 0.5m

(d) Obstructed (e) Our UAS

Figure 1: Experiment Equipment.



Figure 2: RSSI by Altitude and Location.

4 RESULTS
Our results comprise nine hours of collected data, totaling 121,503
received packets, including only the experimental portion of each
flight; landing, takeoffs, and transitions between experiments are
omitted.

4.1 RSSI Analysis
Past measurement studies of UAV-ground communication have
focused on RSSI as a key indicator of performance [2, 4, 24]. RSSI is
often the only signal metric reported by radio modules. We exam-
ine how RSSI is affected by varying experimental parameters. We
present the results without filtering for outliers. Given the literature,
we expected:

• Altitude & Displacement: Receivers should have the best
reception in proximity to a transmitter.

• Location: Obstacles introduce interference, so the unob-
scured road should have the best signal.

• Transmitter/Receiver Configurations: Horizontal trans-
mitters and receivers should have the best reception overall.
Obstructions should decrease reception, while higher eleva-
tions should increase reception.

Altitude: In practice, we found that higher altitudes have fewer
high RSSI values, shown in Figure 2a. However, the mean (dashed-
red) and median (solid green) RSSI values remain nearly constant
as altitude increases.

Location: Figure 2b shows that the mean and median RSSI values
remain nearly the same as location changes. However, the most
obstructed site (Hills) displays the highest median RSSI, and the
area of least obstruction (Road) yields the greatest variance in RSSI
values.

Transmitter/ReceiverConfigurations: Figure 3 shows that trans-
mitter orientation minimally affects mean RSSI, while receiver ori-
entation has a more pronounced impact. All four transmitters had
lower mean RSSI for the vertical receiver than the horizontal receiver.

While all transmitters broadcast at the same rate, the elevated
transmitter receives a greater number of packets than the obstructed

Figure 3: RSSI distributions by antenna configuration.

one (10k or more). However, the obstructed transmitter shows the
highest mean RSSI.

Horizontal Displacement: Figure 4 shows that horizontal dis-
placement is the strongest factor influencing mean RSSI when

Figure 4: Relationship between RSSI and horizontal
displacement. Linear regression plotted for each
transmitter/receiver pair.



compared to relatively minor mean RSSI fluctuations found with
other experimental parameters. Transmitter/receiver pairs show
increased deviation in mean RSSI as displacement increases.

The impact of horizontal displacement and receiver orientation
on RSSI is strongest for the horizontal receiver across all transmitter
configurations with the elevated transmitter and horizontal trans-
mitter performing best across all configurations. Unlike the results
from the analysis of distribution, the obstructed transmitter showed
lower RSSI at greater distances than other transmitters.

Statistical Comparison of Distributions: To verify whether the
observed differences between mean RSSIs across all experimental
parameters are meaningful, we performed non-parametric Kruskal-
Wallis and Kolmogorov-Smirnov tests to compare the empirical
cumulative RSSI distributions. The tests reveal differences in the
distributions between the groups even as the observed mean RSSIs
are not meaningfully different. Consequently, the mean RSSI esti-
mation is a poor metric for comparison of experimental parameters
in our data.

4.2 Packet Reception Rate Analysis
We concluded the previous section with the result that analysis of
RSSI alone does not provide a complete picture of signal quality
for our data. Successful reception is most likely in a favorable RSSI,
while lost packets are unaccounted for (as their RSSI is never re-
ported to the receiver). While our analysis of RSSI showed little
mean fluctuation between experimental configurations, our total
number of received packets indicates significant differences in sig-
nal quality. These differences are not accounted for by RSSI; we
therefore consider alternate metrics.

While throughput is a common performance metric for 802.11
networks, it may be inappropriate for 802.15.4, since typical IoT
applications do not saturate the bandwidth. Instead, real applica-
tions, such as outdoor sensor networks that may lack access to
the power grid, optimize for low-power consumption. We propose
analyzing Packet Reception Rate (PRR), which is the number of
packets received divided by the calculated number sent, instead. Be-
cause each packet loss is wasted energy, PRR is a more appropriate
performance metric.

We group the experimental data by displacement into ten meter
concentric circular sectors radiating out from each transmitter.
To determine the sector into which a packet from a particular
transmitter falls, we compare the UASs high frequency (50Hz) on-
board GPS with the manually recorded transmitter location. To
estimate the number of packets sent by a transmitter, we calculated
the product of the pre-programmed transmission rate and the time-
in-sector by the UAS.

PRR =
# of packets received

time in sector ∗ transmission rate

Figure 5 represents the observed mean PRRs. To evaluate our
findings, we used Poisson regression with the number of received
packets as the outcome and the number of sent packets as the offset
variable, which gave us a model that estimates PRR for comparing
across experimental parameters. We used robust variance estima-
tion via GEE (General Estimating Equations) to compensate for

(a) Horizontal Transmitter to Horizontal Receiver

(b) Horizontal Transmitter to Vertical Receiver

(c) Elevated Transmitter to Horizontal Receiver

(d) Obstructed Transmitter to Horizontal Receiver

Figure 5: Reception rates grouped by altitude and 10m
displacements from transmitter. Cells with fewer than 5
sent packets are left blank. Note that altitude is reported in
feet, and displacement is in meters.



slight deviations from model assumptions. We used the experimen-
tal parameters as covariates: transmitter/receiver configuration,
location, altitude, and displacement sectors. As the PRR metric is
calculated in part by displacement sectors, the reported results
account for displacement while controlling for other experimen-
tal parameters, including location, which did not impact PRR. For
reported confidence intervals (CI), we have p-value < 0.0001.

Transmitter/Receiver Configuration: Receiver orientation no-
ticeably impacts packet loss. The expected vertical receiver’s PRR
is 56.9% of the horizontal receiver’s (95%CI:55.6-58.3). Comparing
Figure 5a to Figure 5b, the vertical receiver’s PRR is lower at higher
altitudes and displacements. In contrast, the vertical transmitter’s ex-
pected PRR is 110.9% of the horizontal transmitter’s PRR (95%CI:107.4-
114.5). Because these graphs are similar to those above, we omit
them.

Elevating the transmitter 0.5m off the ground has an expected
PRR 125.4% to that of the horizontal transmitter (95%CI:121.6-129.3).
Figure 5c shows that the PRR was best for lower altitudes, where
elevating the transmitter overcomes ground obstacles (such as tall
grass) to establish line-of-sight with the UAS.

Obstructing the transmitter in debris produces an expected PRR
of 74.5% to that of the horizontal transmitter (95%CI:71.7-77.4). Fig-
ure 5d shows that, while the obstructed transmitter maintains a
high PRR when the UAS is in proximity, the maximum displace-
ment at which the UAS has good reception is lower than other
configurations, especially at lower altitudes.

Altitude: While proximity to transmitter improves PRR at low
altitudes, higher altitudes typically produce a better PRR at greater
displacement. For example, the expected PRR at 30ft is 76.0% of the
PRR at 150ft (95%CI:71.5-80.8). Altitudes of 150-250ft are optimal
overall and the PRR in this range is not statistically different from
either bound. Altitudes exceeding 250ft see a decline in PRR; for
example 400ft has a PRR 56.5% of the PRR at 150ft (95%CI:52.5-61.1).

5 DISCUSSION

Optimal Altitude: Although low altitudes generally improve PRR
and RSSI, higher altitudes provide better connectivity at greater
displacements because they provide a steeper angle between UAS
and transmitter, which can help reduce signal blockage from obsta-
cles. An altitude between 150ft and 250ft provides the best overall
reception in our scenarios.

Characterizing Effective Reception Range: Digi advertises an
effective total distance of 1200m for the XBee3, with the caveat that
“[a]ctual range will vary based on transmitting power, orientation of
transmitter and receiver, height of transmitting antenna, height of
receiving antenna, weather conditions, interference sources in the
area, and terrain between receiver and transmitter" [6]. However,
we were only able to capture a packet at a maximum total distance
of 297m in our experiments. When accounting for the UASs altitude,
this corresponds to a 278m maximum horizontal displacement from
the transmitter, but the UAS was highly unlikely to receive a packet
at this displacement.

To best compare deployment configurations, we propose an ef-
fective reception range (ERRN ) metric. We define this as the

horizontal displacement at an altitude of 150ft-250ft, at which we
have an average PRR > N% for all displacement up to and including
that range. We list ERR25, ERR33 and ERR50 values for transmit-
ter/receiver configurations in Table 1.

Trans. ERR25 ERR33 ERR50
Max vel.
at 1p/s

H
Re

c.

Horiz. 180m 150m 130m 144 m/s
Vert. 190m 180m 150m 159 m/s
Elv. 200m 200m 140m 153 m/s
Obst 120m 110m 80m 88 m/s

V
Re

c.

Horiz. 100m 90m 60m 69 m/s
Vert. 110m 100m 70m 80 m/s
Elv. 100m 90m 50m 70 m/s
Obst 60m 40m 20m 80 m/s

Table 1: Effective Reception Range and Velocity.

Transmission Rate Selection: IoT deployments typically mini-
mize the transmission rate to save power. However, we found that
this may be difficult when performing aerial data collection with a
UAS, since the flight time on consumer multi-copters as of spring
2019 is 1200 seconds per battery. As flight speed is directly related
to successful data capture at a particular data transmission rate,
multi-copter battery capacity constrains viable rates. Fixed-wing
aircraft are also constrained as they have a minimum flight speed >
10m/s.

We flew the quad-copter at an average speed of 2.2m/s (5mph).
On a single battery, the UAS could cover 2.6km at this speed. This
is already a relatively small coverage area, when accounting for a
round trip flight - approaching the lowest feasible flight speed for
UAS-based data collection.

At our low flight speed, both 500ms and 1s inter-packet trans-
mission rates produced similar RSSI and PRR values. However at
slower rates we received too few packets for a meaningful analysis.
At one packet per 15 seconds we received an average of only 258
packets per transmitter-receiver pair across all locations, altitudes,
and repeated trials. For one packet per minute the average per
transmitter-receiver pair was only 127 packets. Given the experi-
mental results, it is difficult to determine the max flight speed that
will guarantee delivery at low transmission rates as the data is
sparse and collection is limited by battery capacity.

To estimate a rough upper bound for the max flight speed that
guarantees delivery of at least one packet, on a flight path that
takes the UAS directly over a transmitter, we propose the formula
below. We use our ERRN metric (that gives a minimum PRR > N%
across the range).

Max Flight Speed = max
1<N ≤100

(
2 ∗ ERRN ∗ N

Transmission Rate ∗ 100
)

This does not account for signal characteristics that may de-
grade from increased speed, such as Doppler shift in the signal or
increased EM emissions from the motors. Additionally, in practice
a UAS is unlikely to fly directly over all transmitters, and would
instead graze only a portion of the coverage area.



We provide the upper bound of speeds for one packet per second
transmission rate in the last column of Table 1. The reader can
estimate other transmission rates by dividing this number by their
hypothetical rate. Traditional IoT deployment transmission rates
typically exceed one packet per minute and may be unserviceable
for aerial collection using current battery technology.

Optimal Antenna Orientation: Previous work is based on the
idea that radiation patterns cause antenna orientations to affect
signal quality. In our work, the antenna orientation of the trans-
mitter did not significantly impact performance, while the orien-
tation of the receiver had a far greater impact, with the vertically
mounted receiver performing substantially worse than the hori-
zontally mounted one. In our case, this may indicate that signal
radiation is a smaller factor than minor fluctuations in line-of-sight.
Unlike past experiments that employed a 2.8cm straight wire as an
antenna for a 802.15.4 2.4GHz CC2420 transmitter [15], our setup
employed a coiled embedded antenna directly on the comparatively
smaller XBee.

While [15] studied distances of < 10m, our work includes signals
at distances > 250m where the topography and antenna’s geometry
might reduce impact of orientation. The better performance of the
receiver could be due to the superior line of sight to a flat mounted
receiver. The horizontal receiver was parallel to ground at all times,
while the vertical receiver’s own body may have blocked the signal
from unfavorable angles.

A further consideration for transmitter orientation is that aerial
networks might serve as auxiliary modes of connection to on-the-
ground infrastructure. In this case, ground transmitters would be
best tailored to communicate with one another without taking
communication with the UAS into account.

Elevating Transmitters: In IoT deployments where elevating the
802.15.4 radio is possible, it is advisable to do so. While the elevated
transmitter had a very similar RSSI performance to the horizontal
transmitter on the ground, the PRR of the elevated transmitter was
much improved, especially for lower UAS altitudes. The transmitter
seems to clear much of the ground-level obstruction and attain
better line of sight to the UAS when elevated just half a meter above
the ground in our scenario. The optimal height for a transmitter
may depend on the network topography.

Obstruction: Sensor nodes are frequently deployed in the field
with little protection from extreme weather. Nodes and antennas
can be affected by various obstructions, including dirt from rain or
wind. While we find that obstruction minimally affects reported
RSSI, it has a significant impact on PRR.

Communication with buried sensors is possible at a high loss
rate. However, most packets are lost at greater distances, wasting
transmission power. If the IoT device relies on solar power, which
may likewise become obstructed, this exacerbates the issue.

Future Work: As part of future work we would like to examine
performance of aerial collection using 802.15.4 in other environ-
ments, such as urban IoT networks, and for other models of sensors,
including those with external mono-pole antennas. Additionally,
we would like to run more tests with varying types of obstruction,

for example metal objects such as those that may cover sensors in
a disaster. We hope to apply these efforts to better understand the
applicability of UAS networks for post-disaster recovery in a more
urban environment.
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